Siempre es bueno saber algo más de los temas de la energia eólica
-------------------------------------------------------------------------------------------------------------------------------------
1. Proceso de conversión de la energía eólica en energía eléctrica
El proceso de conversión de la energía cinética del viento en energía eléctrica debe sufrir
tres procesos de transformación: aerodinámica, mecánica y eléctrica. En cada paso, una parte de la energía se pierde y como consecuencia, la energía eléctrica que puede desarrollar un aerogenerador es menor que la energía del viento que incide sobre él. Esto no es específico de la energía eólica, ya que todos los procedimientos de obtención de energía presentan pérdidas.
1.1 Eficiencia aerodinámica
Mediante un cálculo de física elemental, se puede demostrar que una determinada masa de aire, con una densidad “r”, moviéndose a una velocidad “v”, transfiere en un tiempo “t” una cantidad de energía mecánica a las aspas de un rotor que barren un área “A”, viene dada por la siguiente expresión [1]:
Esa energía cinética de traslación se transforma por el rotor en energía cinética de rotación. Como se ve en la expresión anterior, la energía que suministra un aerogenerador es proporcional al área que abarca la rotación de sus aspas, razón por la que los aerogeneradores tienden a incrementar la longitud de estas.
Albert Betz (1885-1968) demostró que de esa energía, sólo se puede transformar en energía eléctrica una fracción dada por 16/27 de la energía del viento incidente [1], es decir el 59,3 %, lo que se conoce como
límite de Betz. Esto se debe al hecho, intuitivo por otra parte, de que el aire que entra al rotor lo hace con una velocidad mayor que con la que sale del mismo, dado que el rotor de la turbina eólica se encarga de frenar el viento al extraer su energía cinética y convertirla en energía de rotación (sólo si saliera del rotor a velocidad cero, se transformaría el 100% de la energía del viento en energía de rotación, cosa que es obviamente imposible). La figura muestra esa diferencia de velocidades a la entrada y a la salida del rotor:
La expresión de la energía producida por una turbina se suele escribir habitualmente en términos de potencia, sin más que dividir por el tiempo. De esta forma, la potencia desarrollada por una turbina eólica se expresa así:
Donde ?a es la eficiencia aerodinámica y se define como la relación entre la potencia aprovechada y la disponible; su límite superior es, como ya se ha indicado, 0,59 -dicho dato se obtiene cuando la relación entre las velocidades de salida y entrada al rotor es v2 = (1/3) v1, y es el valor teórico máximo alcanzable por cualquier turbina eólica [2]-. En aerogeneradores reales, este valor es inferior, debido a diversos factores que el cálculo de Betz no contempla (la resistencia aerodinámica de las palas del rotor, la naturaleza incompresible del aire, etc.). Un valor más realista para esta eficiencia se sitúa en el entorno del 45%, es decir, ?a = 0,45 (siempre que la turbina este trabajando con un valor de la velocidad del viento cercano al óptimo, en otro caso sería todavía menor). La siguiente animación muestra las diferencias entre las velocidades de entrada y salida del viento en una turbina:
La eficiencia aerodinámica es el principal factor que limita la capacidad de transformar la energía del viento en energía eléctrica, pero hay otros. En efecto, en la práctica, el máximo de energía que un generador eólico puede transformar en energía eléctrica es aún menor debido a los rozamientos mecánicos de los elementos de la góndola y al rendimiento del generador eléctrico y la electrónica asociada, según veremos a continuación.
1.2 Eficiencia mecánica
El eje de la turbina impulsa una caja de cambios que cambia la velocidad de rotación provocada por el viento a una velocidad que se adapte mejor al generador de energía eléctrica al que está conectado. Este mecanismo es similar a la caja de cambios de un automóvil y en su giro, los diversos engranajes del mecanismo presentan fricción, por lo que una pequeña fracción de energía trasmitida por el rotor del aerogenerador se pierde aquí. Además hay grandes cojinetes que sostienen el eje que también introducen fricción. La eficiencia de todos estos componentes mecánicos se denomina eficiencia mecánica. Típicamente, en los procesos de fricción se pierda del orden del 5% de la energía incidente en la caja de cambios, es decir, que la eficiencia mecánica del aerogenerador es ?m = 0.95.
1.3 Eficiencia eléctrica
A la salida de la caja de cambios, el eje de alta velocidad se acopla al rotor de un alternador, que convierte la energía mecánica de rotación en energía eléctrica, que puede ser continua o alterna, dependiendo de si es un generador de corriente continua o un alternador. En este último caso, ocurre que por la variabilidad inherente al viento, la velocidad de giro, lógicamente, no es estable, de manera que la frecuencia de la corriente generada no coincide con los 50 Hz exactos de la red eléctrica. Por lo tanto, es necesario acoplar complejos circuitos electrónicos de potencia para convertir la frecuencia de la energía producida al valor exacto de 50 Hz, necesaria para poder volcarla en la red eléctrica. Tanto el generador como la electrónica de potencia también tienen pérdidas. El rendimiento combinado de ambos sistemas, generador y electrónica de potencia se denomina eficiencia eléctrica. Las pérdidas en el sistema eléctrico pueden suponer otro 5% de la energía incidente, con lo que la eficiencia eléctrica será, ?e = 0,95.
A la eficiencia global de la turbina, que combina las tres eficiencias descritas (aerodinámica, mecánica y eléctrica) se la denomina Coeficiente de Potencia, Cp y se obtiene como producto de las tres eficiencias descritas: