Redes Neuronales: Un poco de historia (II)

1

Por Javier Oliver Muncharaz

Continuando con el post anterior sobre la historia y evolución de las redes neuronales seguimos a partir de los años sesenta.

1960- Bernard Widroff/Marcian Hoff. Desarrollan el modelo Adaline (Adaptative Linear Elements). Éste fue el primer modelo con una aplicación a un problema real. Fúe usado para la eliminación de los ecos en las líneas telefónicas y se utilizó durante varias décadas.

1969- Marvin Minsky / Seymour Papert. En su libro “Perceptrons”, plantean las limitaciones de las capacidades del Perceptron. Demostraron matemáticamente que no era capaz de resolver problemas relativamente fáciles como el aprendizaje de una función no lineal, funciones muy empleadas en la computación y en muchos problemas reales.

1974- Paul Werbos. Desarrolla el algoritmo de aprendizaje de propagación hacia atrás (backpropagation).

1977- Stephen Grossberg. Plantea la teoría de resonancia adaptada. Se trata de una arquitectura de red que se diferencia de las planteadas hasta la fecha y es capaz de simular la memoria a largo y corto plazo.

1982-1985- John Hopfield. Escribe su libro “ Computación neuronal de decisiones en problemas de optimización”. Describe un sistema (modelo de Hopfield) basado en sistemas olfativos, obteniendo un modelo construido por elementos interconectados que buscan un estado interno de mínima energía.

1986- David Rumelhart /G. Hinton. Redescubren y desarrollan el algoritmo de propagación hacia atrás (backpropagation). Esta será la red en la que me centraré en los próximos posts.

En la actualidad existen muchos estudios sobre las redes neuronales como: la Teoría de la Resonancia Adaptativa (ART) desarrollada por Gail Carpenter y Stephen Grossberg en 1986, las máquinas de Boltzman y Cauchy estudiadas por Hinton y Sejnowski en 1986, los mapas Autoorganizados de Teuvo Kohonen (1984), algoritmo support vector networks o supervector machines (SVM) Vapnik(1995)…

La aplicación de las redes neuronales en el campo de las finanzas y, concretamente, en temas de mercados financieros, parten de un trabajo de White (1988), en el que estudiaba el precio diario de las acciones de IBM mediante un modelo de red neuronal.

A partir de este trabajo surgió un boom de trabajos aplicados a finanzas fundamentalmente relacionados con las cotizaciones bursátiles, tipos de cambio, entre otras variables económicas y financieras. Así, por ejemplo, puede destacarse otros trabajos pioneros como Dutta y Shekhar (1988) que estudia la valoración de los bonos mediante redes neuronales, Trippi (1990) y Hawley (1990)  estudian la toma de decisiones de inversión, Tam y Kiang (1992) estudian las quiebras bancarias, Grudnitski y Osburn (1993) que estudian las cotizaciones de los contratos de futuros del índice S&P y del oro.

 

Aquí finaliza esta pequeña revisión histórica y evolución de las redes neuronales.

  1. #1
    02/08/12 14:23

    Muy interesante (sobre todo para un ingeniero informático que tiene la tesis en minería de datos :P).

Cookies en rankia.com

Utilizamos cookies propias y de terceros con finalidades analíticas y para mostrarte publicidad relacionada con tus preferencias a partir de tus hábitos de navegación y tu perfil. Puedes configurar o rechazar las cookies haciendo click en “Configuración de cookies”. También puedes aceptar todas las cookies pulsando el botón “Aceptar”. Para más información puedes visitar nuestra política de cookies.

Aceptar